Constrained Bundle Methods for Upper Inexact Oracles with Application to Joint Chance Constrained Energy Problems
نویسندگان
چکیده
Joint chance constrained problems give rise to many algorithmic challenges. Even in the convex case, i.e., when an appropriate transformation of the probabilistic constraint is a convex function, its cutting-plane linearization is just an approximation, produced by an oracle providing subgradient and function values that can only be evaluated inexactly. As a result, the cutting-plane model may lie above the true constraint. For dealing with such upper inexact oracles, and still solving the problem up to certain precision, a special numerical algorithm must be put in place. We introduce a family of constrained bundle methods, based on the so-called improvement functions, that is shown to be convergent and encompasses many previous approaches as well as new algorithms. Depending on the oracle accuracy, we analyze to which extent the considered methods solve the joint chance constrained program. The approach is assessed on real-life energy problems, arising when dealing with stochastic hydro-reservoir management.
منابع مشابه
Level bundle methods for constrained convex optimization with various oracles
We propose restricted memory level bundle methods for minimizing constrained convex nonsmooth optimization problems whose objective and constraint functions are known through oracles (black-boxes) that might provide inexact information. Our approach is general and covers many instances of inexact oracles, such as upper, lower and on-demand accuracy oracles. We show that the proposed level bundl...
متن کاملInexact stabilized Benders’ decomposition approaches to chance-constrained problems with finite support
Motivated by a class of chance-constrained optimization problems, we explore modifications of the (generalized) Benders’ decomposition approach. The chance-constrained problems we consider involve a random variable with an underlying discrete distribution, are convex in the decision variable, but their probabilistic constraint is neither separable nor linear. The variants of Benders’ approach w...
متن کاملA chance-constrained multi-objective model for final assembly scheduling in ATO systems with uncertain sub-assembly availability
A chance-constraint multi-objective model under uncertainty in the availability of subassemblies is proposed for scheduling in ATO systems. The on-time delivery of customer orders as well as reducing the company's cost is crucial; therefore, a three-objective model is proposed including the minimization of1) overtime, idletime, change-over, and setup costs, 2) total dispersion of items’ deliver...
متن کاملUncontrolled inexact information within bundle methods
We consider convex nonsmooth optimization problems where additional information with uncontrolled accuracy is readily available. It is often the case when the objective function is itself the output of an optimization solver, as for large-scale energy optimization problems tackled by decomposition. In this paper, we study how to incorporate the uncontrolled linearizations into (proximal and lev...
متن کاملConstrained bundle methods with inexact minimization applied to the energy regulation provision problem
We consider a class of large scale robust optimization problems. While the robust optimization literature often relies on structural assumptions to reformulate the problem in a tractable form using duality, this method is not always applicable and can result in problems which are very large. We propose an alternative way of solving such problems by applying a constrained bundle method. The orig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 24 شماره
صفحات -
تاریخ انتشار 2014